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SOME INVARIANTS OF KAKUTANI
EQUIVALENCE

BY
MARINA RATNER'

ABSTRACT

We introduce some invariants of Kakutani equivalence and using them we
prove that any two distinct cartesian powers of the horocycle flow are
inequivalent.

This paper was motivated by J. Feldman’s r-entropy [2], A. Katok’s discus-
sions in [4, p. 152], and by the proof in [6], showing that the cartesian product of
the horocycle flow with itself is not loosely Bernoulli.

Let T ={T.} be a measure preserving flow on a probability space (X, B, u).
For x € X let x, = Tx and let I,(x) denote the orbit interval [x, x.], t = 0. Let
P ={P,,- -, P.} be a measurable partition of X. If x € P, then j is the P-name of
x and we write P(x)=.

DermnTioON 1. For x,y € X, ¢ >0 and ¢t >0, L(x) and I(y) are called
(&, P)-matchable if there exists an increasing map h from [0, t] onto itself s.t. if
we denote A = {u €[0,t]| P(Tux) = P(Thwwy)} then I(A)/t and [(h(A))/t are at
least 1—¢ where [(A) denotes the length measure of A. We call h an
(¢, P)-match from I,(x) onto I(y).

Set fi(x,y, P)=inf{e : I (x) and L (y) are (¢, P)-matchable}. It is clear that

fi(x,y, P)= fi(x, 2, P)+ f(y, 2, P) forallx,y,z € X.

We call B/(x,e,P)={y € X:f.(x,y,P)<¢} the (¢ P)-ball of radius & >0
centered at x € X, t >0.

A family «, (e, P) of (t, P)-balls of radius £ >0 is called an (g, t, P)-cover of X
if w(Uai(,P))>1—¢.
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Denote K, (g, P) = inf|a. (¢, P)| where | A | denotes the number of elements in
A and inf is taken over all (g, ¢, P)-covers of X.

Let U denote the family of all nondecreasing functions from R ™ onto itself,
converging to o, i.e. u € U iff 0 <u(t) " when t — o,

For u € U we denote

) Blu. e, P)= umnflﬂg%j—’ﬂ

It is clear that if ¢, =&, then B(u, &, P)= B(u, &, P) and if P, = P then
B(u, g, P)=B(u ¢, P2).
We define

e{u, P)=lim sup B(y, ¢, P),

e(T,u)=supe(u, P).

We prove the following theorems.

THEOREM 1. A zero-entropy ergodic m.p. flow T ={T.} is loosely Bernoulli
(LB) (see [1], [4], [7] for definitions) iff e(T,u)=0 for all u € U.

THEOREM 2. Let T ={T,} be an ergodic m.p. flow on (X,B,u) and let
P, = P,=--- be an increasing sequence of measurable finite partitions of X s.t.
V., P. generates the o-algebra B (we say that {P. i =1,2,-- -} generates B).
Then e(T, u) = sup.. e(u, 2..) for all u € U.

THeOREM 3. Let T ={T.} and T ={T,} be two ergodic Kakutani equivalent
m.p. flows on (X, B, ) and (X, B, (1) respectively. Then e(T,u) = e(T, u) for all
ue U, st lim..u(at)u()=1 foralla € R".

ReMARK. In the definition of 8(u, €, P) in (1) we can take instead of the
logarithmic function any v € U, i.e. for u,v € U we can define

{ ’P
B(u,v,e,P)= lir{g&nfﬂ%i)—n,

e{u,v, P)=lim sup B{u, v, &, P),

£l

e(u, v, TY=supe(u, v, P).
4
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Theorems 1,2, and 3 will still hold. The following theorems explain our choice of
the logarithmic function in (1).

THEOREM 4. Let h={h{” = h,X --- X h,} be the n-times cartesian product
of the horocycle flow on the unit tangent bundle of a compact surface of constant
negative curvature. Let u € U be u(t)=1logt, t >0. Then

3n-3=e(h™, u)s=3n-2.
REMARK. Apparently by modifying slightly our proof of Theorem 4 one can
show that in fact e(h™,u)=3(n-1).

The following theorem follows from Theorems 3 and 4.
THEOREM 5. If m# n then h' and h*™ are not Kakutani equivalent.

Proor. Let n>m. Then 3n—-3>3m —2. By Theorem 4 e(h™, u)#
e(h™, u)and by Theorem 3 h™ £ h'™. |

I am grateful to J. Feldman and A. Katok for useful conversations.

1. Proofs of Theorems 1,2,3

ProoF oF THEOREM 1. {T.}is LB iff every P is LB, i.e. (see [2]) given £ >0
there exists t, > 0s.t.if t > ¢, then K, (g, P) = 1. Then e(T,,u)=0forall u € U.
Suppose now that e(T,u) =0 for all u € U. Then

2) Bl(u,e,P)=0 foralue U, ¢>0, P

Given ¢ >0and P let K, = inf{K, (¢, P):p = t} and let u(t) = log K.. Then u is
nondecreasing and we claim that u(t) % when t->. Indeed, if u(t)— then
u € U and we would have B(u, g, P) = 1 which contradicts (2).

So K, % o when t — ». Therefore there exist M > 0 and {#}, t, —> ®, i = 0 s.t.

3) K. (e, P)<M, i=12---.

Using nesting arguments of B. Weiss [7] and of A. Katok and E. Sataev [5] one
shows that (3) implies P is LB (see also lemma 1 in [6]). |

PrOOF OF THEOREM 2. Let ¢ >0 and P ={P,,-- -, P.} be given. Let m and
Q={Qy,---,Q.} be st. Q=2P, and ZL,u(QAP)<e/10. Let F=
Ui (P.AQ)). Since T, is ergodic there are t,>0 and a set YCX, nw(Y)>
1—¢/10 s.t.if t=1¢, and x € Y then

the relative Lebesgue measure of F on
the orbit interval [x, x,] is less than ¢/5.

“)
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For t Z t, let a be an (£/10,t, P..)-cover of X. Let Z= UaNY, u(Z)>
1-¢/5. Let y =« lZ (a restricted on Z), i.e., x,y € Z belong to the same
element of v iff x and y belong to the same ball of a. Clear that [y|=|a|. If x
and y belong to the same element of y then f, (x, y, #..) < £/5. This and (4) imply
that f. (x, y, P) < £ /2. This says that | y | many (z, P)-balls of radius ¢ /2 cover Z.

We have just shown that given £ >0 and P, there exists 2, and t,>0 s.t. if
t Z t then for every {¢/10,t, %, )-cover a there is an (£/2,1, P}-cover y s.t.
|v|=|a|. This implies that if ¢ = t, then K, (¢/2, P)= K. (¢/10, ?..) and

B(u,e/2,P)=B(u, /10, P.)=e(u, P) =sup{e(u, Pn):m=1,2,---}.
This implies that e (u, P) = supm e (4, P..) for all P, which completes the proof. []

ProoF OF THEOREM 3. {T} is Kakutani equivalent to {T,} means (see
[1],[4], [7]) that there exists a measurable 7: X - R", fxrdu = a s.t. if v(x, 1) is
defined by

v(x.t)
5) f r(Tx)du =¢

0
then the flow S, (x)= Tun(x) preserves the measure dv = (v/a)dp and is
isomorphic to {T,}. Cocergin has shown (see [4], p. 120] that  can be taken s.t.

6) L<r(x)<M forsome L,M >0 andallx € X.

We shall show that e(T,u)=e(S,u) for all u € U, s.t. lim,_...u(at)/u(t)=1
for all a ER".

Let £ >0 and P be given. Let 0< §,< ¢ (8, will be chosen later) be s.t. if
0 <6 <8y, then

0 w(A)<d impliesv(A)<e, AESRB

Let 0<8 < &, be fixed. Since T is ergodic there exist v,>0 and Y CX,
w(Y)>1-68/2st. if v=vp and x €Y then

f 7(T.x)du — av| < év.
0

This implies by (5) that if v(x,t)= v, and x € Y then
[t —av(x, t)| < dv(x,1).
It follows then from (6) that if t = t, = Mv, and x € Y then

8) [t —av(x,t)]<8t/L.
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Let =1, and ¢ = (t — 8t/L)/a. Let « be a (8/2,t, P)-cover of X for T. Let
Z=YnNnUa. Then u(Z)>1-5 and

) v(Z)>1-¢ by (7).

Let vy =« | Z and let x, y belong to the same element of y. Then
fi(x,y,P, T) <.

Let h be a (8, P)-match from the T-orbit [x, T;(x )] onto the T-orbit [y, T:(y)].
Let A ={s €0, ])/P(Tx)= P(Tuy)} and let I(A) be the T-length of A on
[0, f]. We have

(10) Ir(A), lr(h(A)) > t(1-8).

It follows from (8) that the S-orbit [x,Sx] =[x, Tuwxnx] D[ Tix] and the
S-orbit [y, Sy] = [y, Toway] 2 [y, Tiy]- We define a map h from [0, v(x, )] onto
[0, v(y, )] by

h(s)=h(s) ifs€[0,f] and
k on [t, v(x, t)] is any increasing map onto [, v(y, )}.

It follows from (6), (8), and (10) that

bli o (e DL B[ v ) <2ME and

(1) L(A),Is(h(A)>t(1-Ms(1—-8/L)).

(11) shows that k defines an M&(1+ 4/La)-match from the S-orbit [x, Sx]
onto the S-orbit {y,Sy]. Let 0<8,<e in (7) be s.t. if 0<8 < 8§, then
M&(1+4/La)<e.

We have proved that if § < &, t = t;, and x, y belong to the same element of
y =a|Z then x,y belong to a (t, P)-ball of radius ¢ >0 for S. Since |y|=|a|
this implies that for a fixed 0 < 8 < §,/2 we have

K,(,P,S)=K:(5,P,T), t=t(1-8/L)/a

and since u € U is nondecreasing

(12) log K, g(s,)P, S) < log K;(( §, ;’, T!.
u(t u(ta

(12) implies that

B(e,P,S)=B(8,P,T)<e(P,T)<e(T,u), since 122%‘1(‘7")% 1.
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Since this is true for all £ >0 and P we get e(S,u)=e(T,u).
Since the relation T ~ S is symmetric, we get the same way that

e(T,u)=e(S,u).
This completes the proof. ad

2. Proof of Theorem 4

In this section we shall use some notations and definitions from [6].
Let G =SL(2,R),
10
=(p 1)

and let I' C G be a discrete subgroup of G s.t. M =I'/G is compact. We assume
that —I €T andif A €T, A#I — I then A is hyperbolic, i.e., |[TrA|>2.
The horocycle flow h = {h,;} on M is defined by

1 0
nre)=tg(} %), gea

We shall also consider the flows

e

1 1t e 0
h".‘(Fg)=Fg(0 1) and g.(Fg)=Fg<O _,).

The flows {h,}, {h*} and {g.} preserve the measure u on M derived from the
Haar measure on G.

We shall need the following fact proved in [6].

Let x,z €M and let z = h*g.x for some |p|<38, |r|<8/t, where 8 >0 is
small. Suppose that [z, h,z] is s-isomorphic to [x, hx] (see [6] for the notion of
s-isomorphism) and h.z = h}g.hx. Then

(13) la| <28, |b|<28/t, |u—t|<2ét

if 8 is sufficiently small.

Let YW=MX :-- xM (n times). The flow h™ ={h, x --- X h,} preserves
v™W=pu x .- X u and is ergodic.

Let x =(x)," -, x.)EY", x, EM, i=12,--,n

For t,K >0 and 8 >0 (small) we denote V(x,,8 K)={y€ Y|y, =
h*gx, for some |p|<8, |r| <8/t and y,=h.h}g.w, i =2,---,n for some
lai| <K/t |bi|<K/[t? |¢;| <8 where wi = h¥gx, i =2,--,n}.

Let w be a partition of M into u-cylinders of diameter at most § > 0 (small)
(see [6]) and let W =w X @ X -++ X @ in Y™,
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LemMMAa 1. Let u € U be u(t)=logt, t >0. Then e(h™,u)=3(n—1).

PrROOF. Let Y=Y, v=v? a =a® V= V® It was shown in [6, proof of
theorem 1] that if ¢ >0 is sufficiently small then there are t,>0, a set FCY,
v(F)>1—¢ and constants K, C(8§)>0, C(§)—>0,6 >0s.t.if x EF, t =, and
v € B/(x, g, a) (the (¢, «)-ball of radius & centered at x, defined in section 1), then

hPv e V(hPx,1,C(8),K) forsome0=p,q=t

This implies that given & >0 (small) there are t,>0, a set F”CY™,
v"(F™)>1-¢ and constants K, C(8)>0 as above s.t. if x € F"™, t = t, and
v € B,/(x, &, a™) for h™ then

(14) hv € VW(hx, t,C(8),K)  forsome0=p,q=t.

Denote

E"x,tCK)= U U hWVOhx L, CK).

q=0 p=0

It follows from (13) that

E™(x,t,C,K)C |} V™(hx 1,2C,2K)=D"(x,1,C,K)= D",

§s==2t
It is easy to see from the definition of V"’ that
(15) Q17 = (D) 5 P

for some constants Q, P >0 depending only on C and K.

We have shown in (14) that if x € F®" CY", t = ¢, and v € B.(x, &, a) then
ve E™(x,t, C(8),K).

It follows then from (15) that

(16) VOB,(x, e, ™) P x € F™,

Let t = ¢, and let y be an (g, t, a“’)-cover of Y (see section 1). It follows
from (16) that

and hence
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and therefore

ny
B(u, &, a™)=lim inflggl('—(m =23(n-1).
= logt

This says that
e(h"™, u)=3(n-1). 0

LemMa 2. Givene >0 therearet,>0, ZCY", v™(Z)>1-¢candp,K >0
st iftZt, xEZ and v € V(x,1,p,K) then v € Bi(x, ¢, a™).

PrRoOE. Let dw denote the union of boundaries of the u-cylinders of w and
let O, denote the y-neighborhood of dw in M,y >0. Let

Oy ={y =@y, y.)EY"|y. €O, forsome i =1,2,- -, n}.

For a given ¢ >0 let 0 <y <min{8/10, £/10} be so small that u (O, )< ¢/10n
(5 is an upper bound for the diameters of u-cylinders in w). Then

v"(0) < e/10.
Since h™ is ergodic there exist >0 and ZC Y™, v™Z >1-¢ s.t.
ift Ztoand x € Z then

(17) the relative length of O¢” on the orbit [x, hx] is at most £/5.

Let p=7y/10 and let K=p/2. Let xE Z, t Zt, and v € V"(x, 1, p, K), i.e.

v=(0n ), i=hign, |pl<p, |ri<plt
and
v =hhtg.w, la|<K/t, |b|<K/t? |al<p, i=2,---,n

where wi=h¥*gx, i=1,2,---,n, w =01
Let w =(w,,:--,w,). For s €[0,1] let wi be s.t. [w;, wi] is s-isomorphic to
[x, hx:), i =1,2,---,n. Then w; = h,w; for some q:

(18) lg—s|<2ps  andalli=1,2,---,n.
It follows from (13) that
(19) d(ws, hx) < 2p, i=1,2,-n

where d denotes the Riemannian metric on the stable foliation W* in M (see

Q)2
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(19) implies via our choice of p that if h{"x& O then h{’x and h{’w have
the same a ™-names.
It follows also from (13) that

d(hv, hyw))<p, i=12,--n

and therefore h’w and h{’v have the same a‘’-names by our choice of p.
This implies that if h{’x & O for some s € [0, ¢] then h{’x and h{’v have
the same a ™
We map s to q to get a match ¢ from the h-orbit [x, h{”x] onto the
h™-orbit [v, h{v].
It follows then from (17), (18), and our choice of y and p that ¢ is an
(&, t, a)-match. This proves that v € B,(x, &, a™). O

-names.

PROOF OF THEOREM 4. If v € B,(x, £/2,a™) then h'{’v € B,(x, &, ™) for all
|p|<e/2. 1t follows from Lemma 2 that if x € Z, then

(20) R=R(x,te)= UJ hV™(x,t,p, K)CB.(x,2¢,a™).

p=-¢

We have
V(H)R = Dt‘[3(n—l)+1]___ Dt—(sn—z)

for some D >0 depending only on £ and a.
It is clear that we can cover Y by Q"> many R-sets for some Q >0.
This implies via (20) that there is a (2¢, 1, @®’)-cover y of Y™ s.t. |y |= Q™"
and therefore

(1) K.Q2e,a™)=Qr™*  and
(n)
B(w,26,a) = lim_ ;nflﬁgﬁl‘égg?—“l <3n-2.

Since (21) is true for all small ¢ >0 we get
22) e(u,a"™)=3n-2.

Now let @, =w,= --- be an increasing sequence of u-partitions of M,
generating the Borel o-algebra in M. Let a=w; X --- Xw. Then
aP=af’=< - - and {a™,i=1,2,-- -} generates the Borel o-algebra in Y™,
(22) is true for all (. By Theorem 2 we get

e(h,u)=3n-2.

This and Lemma 1 complete the proof. O
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