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SOME INVARIANTS OF KAKUTANI 
EQUIVALENCE 

BY 

MARINA RATNER* 

ABSTRACT 

We introduce some invariants of Kakutani equivalence and using them we 
prove that any two distinct cartesian powers of the horocycle flow are 
inequivalent. 

This pape r  was mot iva ted  by J. F e l d m a n ' s  r - en t ropy  [2], A. K a t o k ' s  discus- 

sions in [4, p. 152], and by the p roof  in [6], showing that  the cartesian produc t  of 

the horocycle  flow with itself is not loosely Bernoull i .  

Let  T = {7",} be  a measu re  preserving flow on a probabi l i ty  space (X, ~ ,  ~ ) .  

For  x ~ X let x, = T,x and let L(x) deno te  the orbit  interval  [x, x,], t >= O. Let  

P = {P. , .  �9 Po} be a measurab le  part i t ion of X. If x ~ Pj then j is the P - n a m e  of 

x and we write P(x)=j .  

DEFINmON 1. For  x, y E X ,  e > 0  and t > 0 ,  L(x) and L ( y )  are called 

(e, P ) -ma tchab l e  if there  exists an increasing map  h f rom [0, t] on to  itself s.t. if 

we deno te  A = {u E [0, tllP(Tox) = P ( T . , o , y ) }  then l (A)/ t  and l (h(A))/ t  are at 

least 1 - e  where  l (A)  denotes  the length measure  of A. We  call h an 

(e, P ) -ma tch  f rom L(x) onto  L(y) .  

Set fi(x, y, P ) =  inf{e : L ( x )  and L ( y )  are (e, P) -matchable} .  It is clear  that  

f , (x ,y ,P)<-_f i (x ,z ,P)+fi(y ,z ,P)  for  all x, y, z ~ X .  

We  call B , ( x , e , P ) = { y E X : ~ ( x , y , P ) < e }  the ( t ,P) -ba l l  of radius e > 0  

cen te red  at x E X, t > 0. 

A family a,(e, P) of (t, P)-bal ls  of  radius e > 0 is called an (e, t, P ) - cove r  of X 

if Ix(Ua,(e,P))> 1 - e. 
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Deno te  K,(e, P)  = inf I a, (e, P)] where  I A I denotes  the number  of e lements  in 

A and inf is taken over  all (e, t. P)-covers  of X. 

Let  U deno te  the family of all nondecreas ing functions from R § onto  itself, 

converging to 0% i.e. u ~ U iff 0 <  u(t)/~oo when t - - ~ .  

For  u E U we deno te  

(1) /3(u, e, P )  = lim inf I~ K,(e, P) 
, ~  u(t) 

It is clear that if e,_<--e2 then f l (u ,e .P)>=/3(u ,  e2, P) and if P , ~ P 2  then 

/3 (u, e, P~) - / 3  (u, e, P2). 

We define 

e(u, P)  = lira sup/3(u,  e, P),  

e (T, u ) = sup e (u, P).  
P 

We prove  the following theorems.  

THEOREM 1. A zero-entropy ergodic m.p. flow T = {T,} is loosely Bernoulli 

(LB) (see [1], [4], [7] for definitions) iff e(T, u) = 0 for all u E U. 

THEOREM 2. Let T = {T,} be an ergodic m.p. flow on (X, N,/x)  and let 
~l  <= ~2 <-- "'" be an increasing sequence of measurable finite partitions of X s.t. 

V~=1 ~k generates the it-algebra gd (we say that {~,, i = 1, 2 , - . .  } generates ~ ). 

Then e(T, u)  = sup,, e(u, ~m) for all u E U. 

THEOREM 3. Let T = {I",} and "/~ = {7~,} be two ergodic Kakutani equivalent 

m.p, flows on (X, ~ ,  p, ) and (X, ~ ,  I 2 ) respectively. Then e (T, u)  = e (T, u)  for all 

u E U, s.t. l i m , ~ u ( a t ) / u ( t ) =  I for all a ~ R § 

REMARK. In the definition of /3(u ,e ,P)  in (1) we can take instead of the 

logarithmic function any v ~ U, i.e. for  u, v E U we can define 

/3(u, v, e, P )  = lim inf v(K,(e, P)) 
, ~  u( t )  ' 

e(u, v, P )  = lira sup/3(u,  v, e, P) ,  

e(u, v, T )  = sup e(u,  v, P).  
P 
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Theorems 1,2, and 3 will still hold. The following theorems explain our choice of 

the logarithmic function in (1). 

THEOREM 4. Let h ~"~ = {h~, ~ h, • .. �9 • h,} be the n-times cartesian product 

of the horocycle flow on the unit tangent bundle of a compact surface of constant 

negative curvature. Let u E U be u ( t ) =  logt, t >0 .  Then 

3n - 3 <=e(h~"),u)<- 3 n -  2. 

REMARK. Apparently by modifying slightly our proof of Theorem 4 one can 

show that in fact e(h ~"~, u ) =  3 ( n -  1). 

The following theorem follows from Theorems 3 and 4. 

THEOREM 5. If  m # n then h ~"~ and h ~"~ are not Kakutani equivalent. 

PROOF. Let n > m .  Then 3 n - 3 > 3 m - 2 .  By Theorem 4 e(h~"~,u)# 

e(h "~, u) and by Theorem 3 h~";~ h ~m~. []  

I am grateful to J. Feldman and A. Katok for useful conversations. 

1. Proofs of Theorems 1, 2, 3 

PROOF OF THEOREM 1. {T,} is LB iff every P is LB, i.e. (see [2]) given e > 0 

there exists t,, > 0 s.t. if t > t,, then K,(e, P)  = 1. Then e(T,, u) = 0 for all u E U. 

Suppose now that e(T, u) = 0 for all u ~ U. Then 

(2) /3 (u, e, P)  = 0 for a l l u E U ,  e > 0 ,  P. 

Given e > 0 and P let/~, = inf{Kp(e, P):p  >- t} and let u(t)  = log/~,. Then u is 

nondecreasing and we claim that u(t)76oo when t-->oo. Indeed, if u(t)-->oo then 

u E U and we would have /3(u, e ,P)  TM 1 which contradicts (2). 

So/~, 76 oo when t ~ oo. Therefore  there exist M > 0 and {t~ }, t~ --~ o% i ~ oo s.t. 

(3) K,, (e, P)  < M, i = 1, 2,.  �9 �9 

Using nesting arguments of B. Weiss [7] and of A. Katok and E. Sataev [5] one 

shows that (3) implies P is LB (see also lemma 1 in [6]). []  

PROOF OF THEOREM 2. Let e > 0 and P = {P , , - . . ,  P,} be given. Let m and 

Q = { Q ~ , " ' , Q a }  be s.t. Q--<~m and Ea=~t~(QiAPi)<e/lO. Let F =  

U~=,(PiAQ~), Since 7", is ergodic there are t o > 0  and a set Y C X ,  / x ( Y ) >  

1 -  e/10 s.t. if t_-> t. and x E Y then 

the relative Lebesgue measure of F on (4) 
the orbit interval [x, x,] is less than e/5. 
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For t ~ t o  let a be an (e/lO, t, ~m )-cover of X. Let Z =  U a  o Y, t z ( z ) >  

1 -  el5. Let 3' = a IZ  (a restricted on Z),  i.e., x, y E Z belong to the same 

element of 3' iff x and y belong to the same ball of a. Clear that 13' ] --< l a I- If x 

and y belong to the same element of 3' then [, (x, y, ~, ,)  < e/5. This and (4) imply 

that )~ (x, y, P) < e/2. This says that I 3' I many (t, P)-balls of radius e/2 cover Z. 

We have just shown that given e > 0  and P, there exists ~,, and to>0  s.t. if 

t>-to then for every (e/10, t, ~,, )-cover a there is an (e/2, t ,P)-cover y s.t. 

13'1 --<la I. This implies that if t _-> to then K, (e/2, P) =< K, (e/10, ~, ,)  and 

[3(u, e/2, P)<=[3(u, e/10, ~m)-< e(u, ~,,)-< sup{e(u, ~, ,)  : m = 1 ,2 , . . . } .  

This implies that e(u, P)  ~ sup,. e(u, ~ , )  for all P, which completes the proof. [] 

PROOF OF THEOREM 3. {T} is Kakutani equivalent to {T,} means (see 

[1], [4], [7]) that there exists a measurable ~" : X --> R +, f• ~'dtt = a s.t. if v (x, t) is 

defined by 

l 
vlx, O 

(5) r (T ,x  )du = t 
J0 

then the flow S , (x )=  To~x,o(x) preserves the measure dv = (~'/a)dtz and is 

isomorphic to {~}. Co~ergin has shown (see [4], p. 120] that r can be taken s.t. 

(6) L < z ( x )  < M for some L, M > 0 and all x E X. 

We shall show that e(T, u ) =  e(S, u)  for all u E U, s.t. l i m , ~ u ( a t ) / u ( t ) =  1 

for all a E R + .  

Let e > 0 and P be given. Let 0 < 8o < e (80 will be chosen later) be s.t. if 

0 < 8 < 8o, then 

(7) / z ( A ) < 8  i m p l i e s u ( A ) < e ,  A E 2 .  

Let 0 < 8 < 8o be fixed. Since T is ergodic there exist vo > 0  and Y C X, 

/ z (Y )>  1 -  8/2 s.t. if v _-> Vo and x E Y then 

[ fo~ - avl <By. 
This implies by (5) that if v(x,t)>= vo and x ~ Y then 

[ t -  av(x , t ) l  < Sv(x, t ) .  

It follows then from (6) that if t >= to = Mvo and x E Y then 

(8) It - av(x, t)l < 8t/L. 
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Let t _-> to and [ = (t - 8t/L)/a. Let a be a (8/2,/,  P)-cover of X for T. Let 

Z =  Yf"l [,.J a. Then / x ( Z ) > l - 8  and 

(9) v (Z)  > 1 - e by (7). 

Let 3' = a l Z  and let x, y belong to the same element of 3'. Then 

f i (x ,y ,P ,T)<& 
Let h be a (8, P)-match from the T-orbit [x, T~(x)] onto the T-orbit [y, T;(y)]. 

Let A = {s ~ [0, t]/P(T~x)= P(Th~y)} and let It(A) be the T-length of A on 

[0, i]. We have 

(10) IT(A ), lr(h (A)) > / ( 1  - 8). 

It follows from (8) that the S-orbit [x, S,x] = [x, To~x.,)x] D [x, T;x] and the 

S-orbit [y, S,y] = [y, T~y.,~y] D [y, T~y]. We define a map ff from [0, v(x, t)] onto 

[0, v(y, t)] by 

g(s)=h(s) if s ~ [0, i] and 

/~ on [/, v(x, t)] is any increasing map onto [/, v(y, t)]. 

It follows from (6), (8), and (10) that 

Is[i, v(x, t)],/s[/, v(y, t)] < 2M ,8-~ -t and La 

(11) 
ls (A), ls (h (A)) > t(1 - MS(1 - 8/L)). 

(11) shows that /~ defines an MS(l+4/La)-match from the S-orbit [x,S,x] 
onto the S-orbit [y,S,y]. Let 0 < 8 o < e  in (7) be s.t. if 0 < 8  < 6,, then 

M8 (1 + 4/La ) < e. 
We have proved that if 8 < 80, t => to and x, y belong to the same element of 

3' = a [Z  then x, y belong to a (t, P)-ball  of radius e > 0 for S. Since ] 3' I -<- [a I 
this implies that for a fixed 0 < 8 < 80/2 we have 

K,(e,P,S)<=K;(&P,T), [= t ( 1 -8 /L ) /a  

and since u ~ U is nondecreasing 

(12) log K,(e, P, S) <= log K~(8, P, T) 
u(t) u(?a) 

(12) implies that 

[3(e, P, S) <= [3(8, P, T) <= e(P, T) <= e(T, u ), 
u( /a )  

_ since !im u(t) - 1 .  
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Since this is true for all e > 0  and P we get e(S,u)<-e(T,u). 
Since the relation T -  S is symmetric,  we get the same way that 

e(T,u)<-e(S,u). 
This completes the proof. [] 

2. Proof of Theorem 4 

In this section we shall use some notations and definitions from [6]. 

Let (3 -- SL(2, R) ,  

01) 
and let F K G be a discrete subgroup of G s.t. M = F/G is compact.  We assume 

that - I E F  and if A E F ,  A / I ,  - I  then A is hyperbolic, i.e., I T r A I > 2 .  

The horocycle flow h = {h,} on M is defined by 

h,(Fg)=Fg t 1 ' g E G .  

We shall also consider the flows 

e t h*~(rg)=Fg(~ ~)and g,(rg)=rg(o eO_,). 
The flows {h,}, {h *} and {g,} preserve the measure/~  on M derived from the 

Haar  measure on G. 

We shall need the following fact proved in [6]. 

Let x,z E M  and let z = h*gpx for some Ipl<& Irl<~/t, where 6 > 0  is 

small. Suppose that [z, h.z] is s- isomorphic to [x, h,x] (see [6] for the notion of 

s- isomorphism) and h~z = h * g~h,x. Then 

(13) I a ] < 2 6 ,  Ibi<26/t, l u - t l < 2 6 t  

if 6 is sufficiently small. 

Let Yt"~= M x . . -  x M (n times). The flow h t"~= {h, x - . -  x h,} preserves 

v (")= tz x .. �9 • tz and is ergodic. 

Let x = ( x , , . . - , x , ) E  Yt"), x, E M ,  i =  1 , 2 , . . . , n .  

For t ,K>O and 8 > 0  (small) we denote Vt")(x,t, 6, K)={yEYt"~ ly l=  
h*,g~xl for some IpI < &  Ir l<6/t  and y ,=hc ,  h'~,g~,w, i = 2 , . . . , n  for some 

la, l<g/ t ,  Ib, l<K/ t  2, Ic, l<~ where w, = h*gpX,, i = 2 , . . . , n } .  

Let to be a partition of M into u-cylinders of diameter  at most 6 > 0 (small) 

(see [6]) and let a~")= to x to x - . .  x to in Y~"). 
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LEMMA 1. Let u E U be u( t )  = log t, t > 0. Then e(h ~"), u)  >= 3(n - 1). 

PROOF. Let Y = ya) ,  v = v ~2), a = a ~2~, V = V ~2~. It was shown in [6, p roof  of 

theorem 1] that if e > 0 is sufficiently small then there are t,, > 0, a set F C Y, 

v(F)  > 1 - e and constants  K, C ( 6 )  > 0, C(6) -+0 ,  6 ~ 0 s.t. if x E F, t _-> to and 

v E B,(x, e, a )  (the (t, a) -bal l  of radius e centered at x, defined in section 1), then 

h (p2)D E V(h  a)x = q , t, C(6) ,  K )  for some 0 < p, q =< t. 

This implies that given e > 0  (small) there are t o > 0 ,  a set F(")C Y("~, 

vl"~(F(")) > 1 - e and constants  K, C ( 6 ) > 0  as above  s.t. if x ~ F ("), t => to and 

v E B , ( x , e , a  ~"~) for h ~"~ then 

(14) 

Deno te  

V (hq x,t, C ( a ) , K )  

E'")(x,t,C,K) = 0 0 
q =0 p=O 

for some 0 _-< p, q _-< t. 

ht")vt")tht")~ t, C, K).  - p  - -  ~,,* q ~ 

It follows f rom (13) that 

E~"' (x , t ,C,K)  C 0 ~") ~"' V (hs x,t, 2C, 2 K ) = D ~ " ) ( x , t , C , K ) = D  ~"~. 
s = -2 t  

It is easy to see f rom the definition of V ~"~ that 

(15) Ot -3'"-',<- v'"'(D'"') < Pt -3'"-'' 

for some constants  Q, P > 0 depending only on C and K. 

We have shown in (14) that if x E F ~"~ C yc,~, t _-> to and v E B,(x, e, a ~")) then 

v E E~")(x, t, C(6),  K).  

It follows then f rom (15) that 

(16) v'"'B,(x, e, et '")) <= Pt -3`"-'', x E F'"). 

Let t -> to and let y be an (e, t, ar of Yr (see section 1). It follows 

f rom (16) that 

lyl__> 1 - 2 e  
T l3(n  1) 

and hence  

K,(e, a ~")) > 1 p2____s t3t._. 
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and there fore  

This  says that  

/ 3 ( u ,  e ,  a c"~) = lira inf l~ K,(e ,  ct C"~) >= 3(n - 1 ) .  
, ~  log t 

e(h'"' ,  u)--- 3(n - 1). [ ]  

LZMMA 2. Given e > 0 there are to > O, Z C Y~"J, i,t")(Z) > 1 - e and p, K > 0 

s.t. if  t >= t,,, x ~ Z and v ~ V~"~(x, t, p, K )  then v E B,(x, e, a~")). 

PROOF. Let  OoJ deno te  the  union of boundar ies  of the u-cyl inders  of w and 

let O~ deno te  the 3 , -ne ighborhood of 0oJ in M, 3' > 0. Let  

O ' 4 ' =  {y = ( y ~ , . . . , y , ) ~  Y" ly, ~ O~ f o r s o m e  i = 1 , 2 , - - - ,  n}. 

For  a given e > 0 let 0 < 3, < rain {6/10, e/10} be so small that  p. (O~) < e ~IOn 

(3 is an uppe r  bound  for  the  d iamete r s  of u-cyl inders  in ~o). Then  

~,~"~(O ~ "~) < e/10.  

Since h ("~ is ergodic  there  exist t o > 0  and Z C Y~"~, ~,(")Z > 1 - e  s.t. 

if t ~ to and x E Z then 

(17) 
the  relat ive length of O~ "J on the  orbi t  [x, h~"~x] is at most  el5.  

Let  p = 3,/10 and let K = p/2.  Le t  x E Z, t _-> to and v ~ V~"~(x, t, p, K) ,  i.e. 

v=(v,,--.,v,), v,=h*.g~,, )pl<p, )ri<p/t 

and 

v~ = hc, h*,g~,w~, l a~ I < K/ t ,  I b~ I < K/t2,  

where  w~ = h*gpx~, i = 1, 2,-  �9 -, n, wt = vl. 

Ic~t<p, i = 2 , - - . , n  

Let  w = ( w , , . - . ,  w,) .  For  s E [0, t] let w7 be  s.t. [w,, w,'] is s - i somorph ic  to 

[x, h~x,], i = 1 , 2 , . . . ,  n. Then  w~ = hqw, for  some  q:  

(18) I q - s I < 2#s and all i = 1, 2 , - - . ,  n. 

It follows f rom (13) that  

(19) d(w~, h ~ )  < 2p, i = 1 , 2 , . . . ,  n, 

where  d deno tes  the R i e m a n n i a n  metr ic  on the stable foliation W s in M (see 

[6]). 
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hq w have (19) implies via our  choice of p that if ht")x ~ x ,  ,__v~ot") then ht")x~ and (") 

the same a(")-names. 

It follows also f rom (13) that 

d(hqvi, hqw , )<p ,  i = 1 , 2 , - . . , n  

and there fore  t.) ~.~ hq v the a hq w and have same (")-names by our  choice of p. 

~ ,  h~ x and h ,  x ~ for some s E hq v have This implies that if t.) o r . )  [0, t] then (") ~") 

the same a(")-names. 

We map s to q to get a match ~b from the h~")-orbit [x,h~")x] onto  the 

h~")-orbit [v, h~"~v]. 

It follows then f rom (17), (18), and our  choice of y and p that ~b is an 

(e, t, a~"~)-match. This proves that v E B,(x,  e, a ("~). [] 

PROOV OF TrmOREM 4. If V ~ B, (x, e/2,  a (")) then h ~")v E B, (x, e, a ("~) for  all 

I P I < e/2.  It follows f rom L e m m a  2 that if x E Z, then 

(20) 

We have 

R R(x,t ,e)= 0 t.) (.~ = hp V ( x , t , # , K ) C B , ( x ,  2e, a(")). 

vt . )R = Dt-13(,-l)+~l = Dt- t  3.-2) 

for  some D > 0 depending only on e and a. 

It is clear that we can cover  Y(") by Ot  3"-2 many R-se t s  for  some O > 0. 

This implies via (20) that there  is a (2e, t, a t"))-cover y of Y~") s.t. l y l  =< O t3" 2 

and there fore  

(21) K,(2e, a (")) <= O t  3"-2 and 

/3(u, 2e, a t")) lim inf l~ K,(2e, a t")) = < 3 n  - 2 .  
,~| log t = 

Since (21) is t rue for all small e > 0 we get 

(22) e(u, a t")) <- 3n - 2. 

Now let to~=< to2_- < . . -  be an increasing sequence  of u-par t i t ions  of M, 

generat ing the Bore l  o '-algebra in M. Let  a } " ) = t o ~ •  • Then  

a ]  ")<= a t")<z = . - .  and {oil "), i = 1 , 2 , . . - }  genera tes  the Borel  o '-algebra in yr,) .  

(22) is t rue for all a I "). By T h e o r e m  2 we get 

e(ht") ,u)<-_3n - 2 .  

This and L e m m a  1 comple te  the proof.  [ ]  
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